Heredity Chapter 3

Mendelian Genetics

3:1 Genetics

You are who you are due to the interaction of HEREDITY and ENVIRONMENT.

ENVIRONMENT: all outside forces that act on an organism.

HEREDITY: traits that are passed from parents to offspring.

INHERITANCE: the passing of traits by heredity

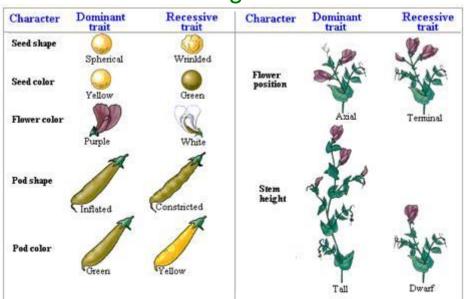
GENETICS: the scientific study of heredity.

GREGOR MENDEL: "Father of Genetics"; Austrian monk and high school teacher who extensively studied heredity.

3:2 What did Mendel do?

MENDEL USED PEA PLANTS TO STUDY HEREDITY FOR TWO REASONS

1. He could easily identify 7 different characteristics and two opposing traits for each characteristic.


CHARACTERISTIC: a hereditary quality of an organism.

EX: stem length, seed color

TRAIT: contrasting or opposing forms of a characteristic.

EX: Tall stem or short stem

Yellow seed or green seed

 He could control the fertilization of pea plants, because each plant has both male and female reproductive organs.

<u>SELF-POLLINATION</u>: when pollen (sperm) from a plant fertilizes an egg on the same plant.

<u>CROSS-POLLINATION</u>: when pollen from one plant fertilizes an egg on another plant.

MENDEL WAS SUCCESSFUL BECAUSE:

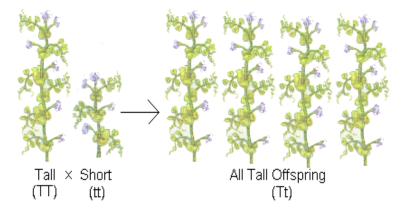
- 1. He studied only one characteristic at a time.
- 2. He kept detailed quantitative records of his work.

3:3 Mendel's Experiments

EXPERIMENT ONE: Mendel observed self pollination in pea plants.

RESULTS: Plants kept the same traits generation after generation.

EX: Tall plants always produce tall offspring when self-pollinating, short always produce short.

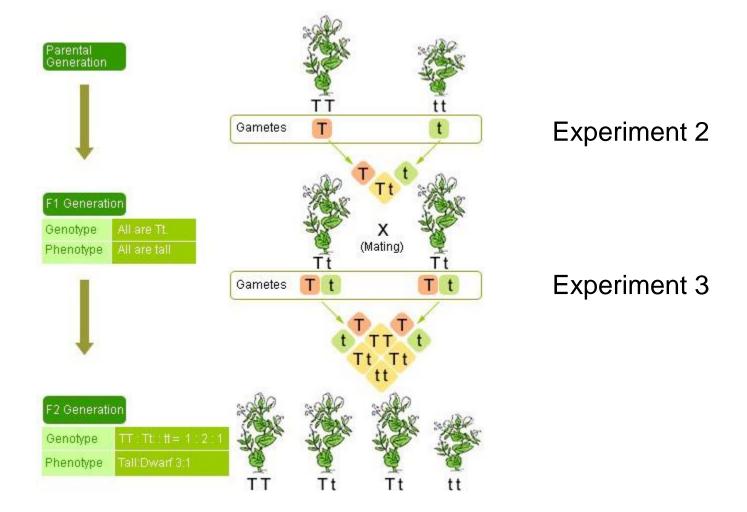

EXPERIMENT TWO: Mendel cross-pollinated plants with contrasting traits.

PARENTAL (P₁) GENERATION: parents with two different traits.

FIRST FILIAL (F₁) GENERATION: offspring of the P₁ parents, have only one of the two parental traits.

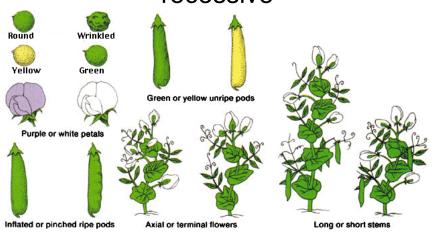
RESULTS: All of the F₁ offspring exhibited the same trait, they looked like only one of the parents.

EX: P_1 Tall X short F_1 ALL Tall


EXPERIMENT THREE: Mendel allowed the F₁ generation to self-pollinate.

SECOND FILIAL (F_2): offspring of the F_1 generation. RESULTS: In the F_2 generation $\frac{3}{4}$ had one trait, $\frac{1}{4}$ had

the contrasting trait.


EX: P_1 Tall X short F_1 All Tall

F₂ 3/4 Tall and 1/4 short

Mendel's Peas ~ Characteristics and Traits ~ Crosses and Results

The trait on the left is dominant and the trait on the right is recessive

Results of Mendel's Monohybrid Crosses

Characteristics	P ₁ Contrasting Traits	F₁ Results	F ₂ Results	F ₂ Ratio
Seed Shape	Round X wrinkled seed	Round	5474 Round 1850 wrinkled	2.96:1
Seed Color	Yellow X green seed	Yellow	6022 Yellow 2001 green	3.02:1
Flower Color	Purple X white flower	Purple	705 Purple 224 white	3.15:1
Pod Shape	Inflated X constricted pod	Inflated	882 Inflated 299 constricted	2.95:1
Pod Color	Green X yellow pod color	Green	428 Green 152 yellow	2:82:1
Flower Position	Axial X terminal flower	Axial	651 Axial 207 terminal	3.14:1
Stem Height	Tall X short	Tall	787 Tall 277 short	2.84:1

Conclusion of the result in the above table:

- The heterozygous F₁ generation expresses the dominant trait.
- In the F₂ generation, offspring may express either the dominant or the recessive trait.
- In the F₂ generation, the dominant to recessive ratio is 3:1 (75% dominant, 25% recessive).

3:4 Mendel's Hypothesis

 FIRST HYPOTHESIS: Inherited characteristics (traits) are determined by genes, genes consist of two alleles (1 gene = 2 alleles).

<u>GENE</u>: unit of heredity that determines the trait expressed for a characteristic, enough DNA to code for one protein.

<u>ALLELE</u>: one half of a gene, comes from either the mother or the father.

ALLELE from mom + ALLELE from dad = GENE of offspring Alleles may be symbolized by using capital or lower case letters.

T → allele for tall stem trait

t → allele for short stem trait

 SECOND HYPOTHESIS: One allele of the pair of a gene may mask the other allele, preventing it from expressing its effect.

AKA Principle of Dominance and Recessiveness.

<u>DOMINANT ALLELE</u>: allele whose trait is expressed <u>RECESSIVE ALLELE</u>: allele whose trait is not expressed because it is overruled by the dominant allele

EX: Tall allele is dominant T short allele is recessive t

<u>GENE</u>		<u>TRAIT</u>
TT	pure Tall	Tall
tt	pure short	short
Tt	hybrid Tall	Tall

<u>HYBRID</u>: an organism that expresses the dominant trait, but carries both the dominant and recessive allele.

3. THIRD HYPOTHESIS: The alleles in the pair of a gene are separated during formation of gametes (egg or sperm).

AKA Principle of Segregation

GAMETES: haploid reproductive sex cells, have only one allele of each gene.

- EX: pure tall plant (TT) -> all gametes have Tall allele (T)
 - pure short plant (tt)→ all gametes have short allele (t) hybrid tall plant (Tt)→ ½ gametes have Tall allele (T)
 - ½ gametes have short allele (t)
- 4. FOURTH HYPOTHESIS: The allele pair of one gene is separated and distributed to gametes (egg & sperm) independently of all other genes.

AKA Principle of Independent Assortment

EX: alleles for height gene have no connection with alleles for the seed color gene

Parent gene → TtYy

Possible gametes → TY, Ty, tY, ty

3:5 Modern Uses of Mendel's Work

<u>GENOTYPE</u>: symbols representing the alleles present in a gene in the cells of an organism.

EX: TT, Tt, tt

<u>PHENOTYPE</u>: the trait caused by a gene; what you can see.

EX: Tall plant, short plant

<u>HOMOZYGOUS</u>: genotype in which both alleles of a gene are the same.

EX: TT → homozygous dominant tt → homozygous recessive

<u>HETEROZYGOUS</u>: genotype in which the two alleles of a gene are different; hybrid.

EX: Tt → heterozygous

PROBABILITY: the likelihood that a specific event will occur.

Probability= # of one kind of event # of all events

EX: In F_2 : dominant seed color (Yellow) = 6022 recessive seed color (green) = 2001 total = 8023

probability (Yellow) = 6022 = 0.75 or 75% 8023

probability (green) = $\frac{2001}{8023}$ = 0.25 or 25%

Ratio of dominant to recessive = 3:1

In genetics and other systems based on probability the expected ratios occur only when there are many trials.

<u>PUNNETT SQUARE</u>: grid used to show all possible offspring resulting from a cross between two parents.

TO MAKE A PUNNETT SQUARE

- 1. Draw square and select a trait to study.
- 2. List alleles for all possible male gametes across top of the square.
- 3. List alleles for all possible female gametes down the side of the square.
- 4. Fill in the square by placing one female gamete and one male gamete in each square.

Punnett's Squares

These show the 2 alleles of each parent plant crossed with each other and the resulting 4 possible offspring with T = tall, t = short.

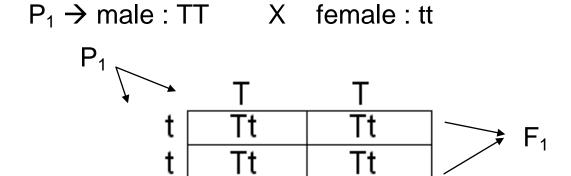
TT = dominant tall, tt = recessive short, Tt = mixed hybrid

TT = dominant tall (genotype tall, phenotype tall)

Tt = mixed hybrid (genotype hybrid, phenotype tall) tt = recessive short (genotype short, phenotype short)

Using the Punnett's Squares below, name the offspring of all possible parent combinations.

7		τ	
-		t	
name the 4 p	are dominant tall, cossible offspring. 2.	possible offsp	are mixed hybrids, name the control of the expected range.
	4		
	T		t t
-		t	
		t	
	dominant tall, one is mixed the 4 possible offspring.		its are recessive short, 4 possible offspring,
7.5	2	_ 1	2
	4	3	4


3:6 Monohybrid Crosses

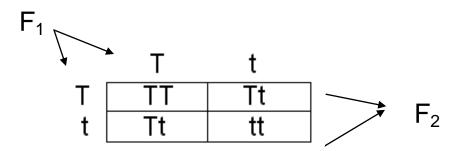
MONOHYBRID CROSS: a cross that involves one gene, one characteristic, or one pair of contrasting traits.

EX: show a Punnett square to represent Mendel's experiments.

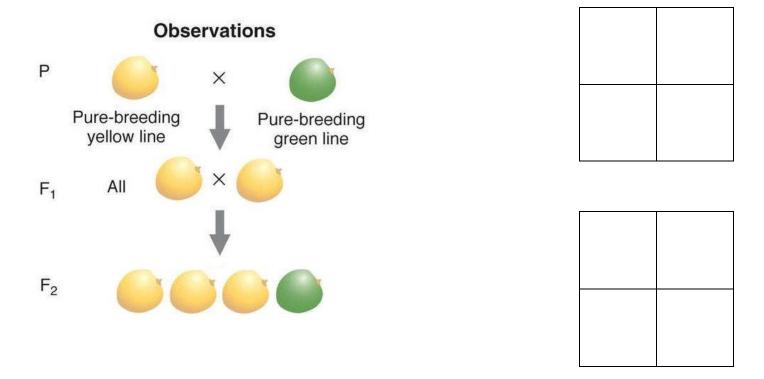
Experiment Two

> Cross a homozygous Tall male with a homozygous short female.

F₁ → genotype ratio - 0 TT:4 Tt:0 tt phenotype ratio - 4 Tall:0 short


All offspring of the P₁ parents (F₁ generation) are HETEROZYGOUS (Tt) and would be TALL.

F₁ → genotype - Tt (heterozygous) phenotype - TALL


Experiment Three

 \triangleright Cross two of the F₁ (heterozygous) offspring.

 $F_1 \rightarrow male : Tt$ X female : Tt

The offspring of the F_1 parents (F_2 generation) are $\frac{3}{4}$ tall and $\frac{1}{4}$ short.

3:7 Testcross

<u>TESTCROSS</u>: procedure in which an individual with dominant phenotype but unknown genotype is crossed with a homozygous recessive individual in order to determine the unknown genotype.

Cats: Siamese (AA or Aa) x albino (aa)

Cross 1 genotypes – AA x aa

	А	А
а	Aa	Aa
а	Aa	Aa

Offspring → phenotypes = 100% Siamese genotypes = 100% Aa

If all offspring from testcross are dominant phenotype, unknown genotype of parent is homozygous dominant.

Cross 2 genotypes – Aa x aa

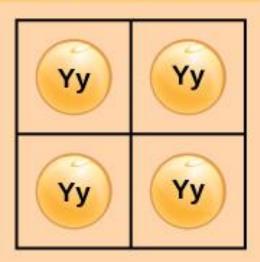
	Α	а
а	Aa	aa
а	Aa	aa

Offspring → phenotypes = 50% Siamese

50% albino

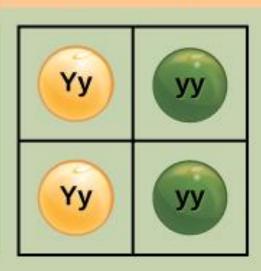
genotypes = 50% Aa, 50% aa

If any offspring from testcross are recessive phenotype, unknown genotype of parent is heterozygous.



The Test Cross

Gametes from parent of unknown genotype
Y
?


Gametes from recessive parent

A test cross resulting in all dominant offspring indicates that the parent is homozygous dominant.

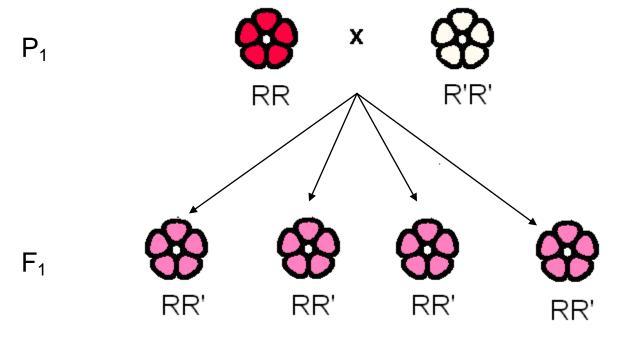
Gametes from parent of unknown genotype

Gametes from recessive parent

A test cross resulting in a 1:1 ratio of yellow to green offspring indicates that the parent is heterozygous.

3:8 Incomplete Dominance and Codominance

<u>INCOMPLETE DOMINANCE</u>: when neither allele of a gene is dominant and both affect the phenotype.


EX: Four-o-clock flowers
Characteristic – flower color
R=allele for red color
R'=allele for white color

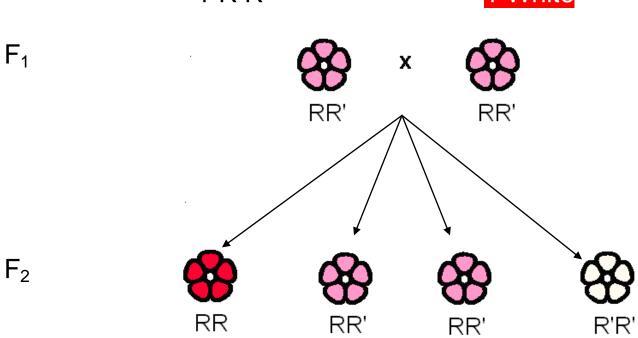
Genotypes	<u>Phenotypes</u>
RR	Red
RR'	Pink
R'R'	White

Cross a red flower plant with a white flower plant.

	R'	R'
R	RR'	RR'
R	RR'	RR'

All offspring are heterozygous (RR') and have the PINK flower color trait.

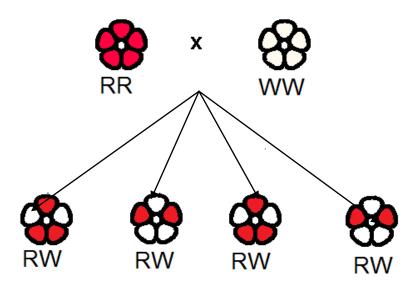
> Cross two of the heterozygous pink.

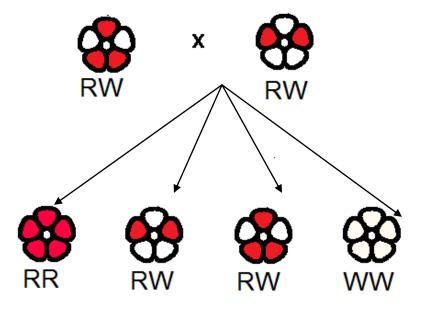

	R'	R
R'	R'R'	R'R
R	R'R	RR

Genotype: 1 RR Phenotype: 1 Red

2 R'R

1 R'R'


2 Pink1 White

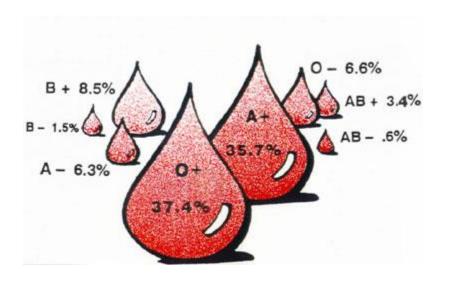

<u>CO-DOMINANCE</u>: occurs when both alleles for a gene are expressed in a heterozygous offspring

Co-Dominance in Flowers

 P_1

 F_1

3:9 Multiple Alleles


MULTIPLE ALLELES: three or more contrasting alleles that may control a single trait.

EX: Characteristic - human blood type Traits – type A, type B, type AB, type O Alleles – I^A, I^B, i^O

<u>Genotype</u>	causes	<u>Phenotype</u>
I^AI^A		type A
I^Ai^O		type A
I^AI^B		type AB
l ^B l ^B		type B
I^Bi^O		type B
i ^O i ^O		type O

Both allele I^A and I^B are dominant so the heterozygous genotype (I^AI^B) allows both alleles to be expressed. In this example, both I^A and I^B dominate i^O.

ABO Blood Groups				
Antigen (on RBC)	Antigen A	Antigen B	Antigens A + B	Neither A or B
Antibody (in plasma)	Anti-B Antibody Y Y Y Y Y Y	Anti-A Antibody	Neither Antibody	Both Antibodies イ
Blood Type	Type A Cannot have B or AB blood Can have A or O blood	Type B Cannot have A or AB blood Can have B or O blood	Type AB Can have any type of blood Is the universal recipient	Type O Can only have O blood Is the universal donor

